Lecture 8

Continaity. let $\left(x, d_{x}\right) d\left(Y, d_{y}\right)$ be netic spaces.
A fuction $f: X \rightarrow Y$ is said to be nationoos at a point $x_{0} \in X$ if

$$
\left.\int_{- \text {ball }} \forall x, d_{x}\left(x, x_{0}\right)<\delta \Rightarrow d\left(f(x), f / c_{0}\right)\right)<\varepsilon \text {. }
$$

 We say the ϵ is cortinnows it it's continnocs at ever point at X.

Recall thet $f o r: X \rightarrow Y$ at $A \leq K$ \& $B \leq Y$,
f-preimaye: $f^{-1}(B):=\{x \in X: f(x) \in B\}$
t-inage: $f(A):=\{y \in Y: \exists x \in A \quad f(x)=y\}$.
Continnity via preinages. Lt $f: X \rightarrow Y$ be a fanchio, X, Y as cloce
(a) f is contiunouc af $x_{0} \in X \Leftrightarrow$ the f-preinage of every weight. of $f\left(x_{0}\right)$ is a (not wecessarils opend weighb. of x_{0}, i, e. \forall neighb. V of $f\left(x_{0}\right), f^{-1}(v)$ is a ueighb. $f^{-} x_{0}$.
(b) f is canticous \Leftrightarrow t-palimages of open exts are open.

Pcoot. (a) f as cont. at $x_{0} \Leftrightarrow \forall$ ubh $V . f f\left(r_{0}\right)$ Jubh U of x_{0} s.t. $f(u) \leq V \Leftrightarrow u \leqslant f^{-1}(V)$
$\Leftrightarrow \forall$ ubh V of $f\left(x_{0}\right), f^{-1}(V)$ is a ubh of x_{0}.
$(b) \Rightarrow$ Sypose f is oit. al let $V \leq Y$ be open. Lt $x \in f^{-1}(V)$. Becose f is u-t. at x any V is a ubh of $f(x), f^{-1}(v)$ nuss he a ubh of x. Thus, sone open nble of x is contcined in $f^{-1}(U)$. Sine x was orbiicraly, $f^{-1}(U)$ is open.
\Leftrightarrow. Fix an arbitrars $x, \in X$ al let V be a dbh of $f\left(x_{0}\right)$, which we nay ascuare is open by replacing V with int (V). Tou $f^{-1}(V)$ is open ls the hagpoThesis so it is a neighb of x_{0}. Hecce f is cout. at x_{0}.

Warming. In (a) above, even if V is open, $f^{-1}(V)$ wat not be beare f may not be contincons at other points of $f^{-1}(v)$. For exaple: $f: \mathbb{R} \rightarrow \mathbb{R}$
Then $V:=(1,3)$, $f^{-1}(v)=\{0\} \cup\left(\frac{1}{3}, 1\right)$, not open.

We call $f: X \rightarrow Y$ a homeomorphism if it's a bijection al both f and $f^{\prime \prime}$ are continuous.

Esconle the the cont. of f^{-1} is col automatic.
lat (\mathbb{R}, \tilde{d}) be the discrete metric spice el let (\mathbb{R}, d) be the usual metric space al let F be the identity tun ion $x \mapsto x$. Then f is continuous from (\mathbb{R}, \tilde{d}) to (\mathbb{R}, d) bat f^{-1} is a' f.

Examples. $0 \quad f=2^{N} \rightarrow[0,1] \quad$ This is sergetive d continues
$\left(x_{n}\right) \mapsto 0 . x_{0} x_{1} x_{2} \ldots$ bat not infective lemme
HW bingen recesectation sone rational numbers have two representations: $0.1000 \ldots=0.01111 \ldots$.
$0 f: 2^{\mathbb{N}} \rightarrow e \leq[0,1]$ the Cantor ide.
$\left(x_{n}\right)=x \mapsto$ the unige elewart in $\bigcap_{u} C_{x \mid n}$

$$
\begin{aligned}
& \longmapsto C_{\phi}
\end{aligned}
$$

11
$\ldots . .$.
the same topologically las far as open celt we concerned.
Continuity vic lilith, let $f:\left(x, d_{x}\right) \rightarrow\left(Y, d_{Y}\right)$ be a function.
Obs. If $x_{0} \in X$ is isolated, then every function $f: X \rightarrow Y$ is continua at x_{0}.
T. understand contianity at wonisolated points let's loot at limits.

Del. Let $f_{0}\left(x, l_{x}\right) \rightarrow\left(Y, d_{4}\right)$ al let $x_{0} \in X$. We call $y_{0} \in Y$ a limit of F as $x \rightarrow x_{0}$. if \forall ah V of $y_{0} \exists a$

$$
\begin{aligned}
& \underbrace{u b h}_{7 \delta-\text { ball }} u \text { of } x_{0} \text { set. } f\left(u \backslash x_{0}\right) \subseteq V^{\|^{\varepsilon-b_{a}} l} \\
& f^{-1}(v) \cup\left\{x_{0}\right] \text { is a ugh of } x_{0} \text {. } \\
& \text { 亿 } \\
& \text { if } R_{<} d_{x}\left(x, x_{0}\right)<\delta \text { then } d_{Y}\left(f(x), y_{0}\right)<\varepsilon \text {. }
\end{aligned}
$$

Obs. If x. is an isolated poicit, hon $\forall_{y} \in Y, y$ is a limit of f as $x \rightarrow x_{0}$.

So limits only mater sense for wonisolafed points, in mich case they are unique (in netric spaces) al we denote it by $\lim _{x \rightarrow a_{0}} f(x)$. HW Show mainneums.

Limit via sequences. Let $f:\left(X, d_{x}\right) \rightarrow\left(Y, d_{Y}\right)$ a $x_{0} \in X, y_{0} \in Y$. Suppose x. is at isolated.

$$
\lim _{x \rightarrow x_{0}} f(t)=y_{0} \Leftrightarrow \forall\left(x_{n}\right) \in X \backslash\left\{x_{0} \text { if } x_{n} \rightarrow x_{0}\right.
$$

Proof. \Rightarrow let $\left(x_{n}\right) \subseteq X \backslash\left\{x_{0}\right\}$ d $x_{n} \rightarrow x_{0}$. We weed to show $f\left(x_{c}\right) \rightarrow y_{0}$. Fin a uh V of y_{0}. We know the $U:=f^{4}(v) \cup\left\{x_{0}\right\}$ is a abl of x_{0}. Thus, $\forall a x_{u} \in U$, Thus, \forall^{*} s $f\left(x_{n}\right) \in V$.
\Leftrightarrow We prove the costeapositice: suppose $\lim _{r \rightarrow x_{0}} f(x) \neq y_{0}$
U Then \exists ubs V d y_{0}, it. $U=F^{-1}(V) \cup\left\{x_{x_{0}}\right\}_{\text {rs. }}^{r x_{0}}$ in n_{0} a
(N1/x.ars weithb of x_{0}. Then $\forall r>0, B_{r}\left(x_{0}\right) \notin U$, so $\forall n$ $\Rightarrow x_{n} \in B_{\frac{1}{L}}\left(x_{0}\right)$ sit. $x_{n} \notin f^{-1}(v)$. Then $x_{2} \rightarrow x_{0}$ but $f\left(x_{n}\right) \notin V, n_{m}, \quad f\left(x_{n}\right) \nRightarrow y_{0}$.

Contimitits via livits. Let $f:\left(x, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$ al let $x_{0} \in X$ be a nociolated point. TFAE:
(1) f is octinsocs at x_{0}.
(2) $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
(3) $\forall\left(x_{L}\right) \leq X$ if $x_{n} \rightarrow x_{0}$ then $f\left(x_{c}\right) \rightarrow f\left(x_{0}\right)$.

Proot. One just unravals the letinitions al use the previons propocition. HW

Exalles of cantimity ul discoctinnity.

- Thomae's fuction

$$
\begin{aligned}
f:(0,1) & \rightarrow\left[0 \frac{1}{2}\right] \\
x & \mapsto\left[\begin{array}{ll}
\frac{1}{m} & \text { if } x \in \mathbb{Q} \quad d x=\frac{n}{m} \text { reduad } \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Sine fachede we ouly tiviste\} many ${ }^{\text {ahbeed }}$ tractions $\frac{n}{m}$ is $(0,1)$, it. $\frac{1}{m}>\frac{1}{M}$ (her a fixed M), we see the if $\left(x_{2}\right)$ is a sey. of rationals corverging to an ierationat, thon $f\left(x_{n}\right) \rightarrow 0$. Thas f is coot. at ircational. On the other hand f is discoatineoss at eving rational q beare \exists sey. $\left(x_{n}\right) \subseteq \mathbb{R} \backslash \mathbb{Q}$ convergiog to $\&$.

This is a tacetion hich is cont. on $\mathbb{R} \backslash Q$ al discoall. can thoe bo an opposite farction, i.c. vant. on (ll al disc or $\mathbb{R} \backslash \mathbb{D}$?

HWW The sot of continuits point of ang function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is $G_{s}=$ (fbl indecection of opend.

Remark. We will show using Baire category ol pertect sont poperty nt \mathbb{Q} is nol a_{i} lits F_{σ} b, cletinitial.

Thus, these cannot be a fungion $f: \mathbb{R} \rightarrow \mathbb{R}$ Unt i) out. on \mathbb{Q} by disc at every ireational.

